

BART TBT Seismic Retrofit BT Reanalysis GOC Briefing

January 19, 2022

This presentation contains Security Sensitive Information (SSI) "For Official Use Only", requiring protection against unauthorized disclosure. These materials may be distributed only on a "need-to-know" basis by prior written permission from BART: and when unattended, shall be stored in a secured location, not accessible to unauthorized persons.

Typical Section

TYPICAL SECTION

Primary Seismic Vulnerabilities

- Discovered panel weld defects
 - May crack and leak, in areas with large soil movements
- Water intrusion issue only
- Structural integrity is preserved
 - Circumferential cracking of outer shell does not cause collapse

MODULE OIDTU MELDO

2016 Retrofit Solution

Objectives:

- Remove conservatisms in ground motions
- Use latest science and engineering peer reviewed
- Confirm descoping
- Quantify uncertainty and risk

Tentative findings as of January 2021:

- Leakage in west/middle portion of TBT is small
- Retrofit of Tubes 51 to 53 is necessary
- Reanalysis so far supported the descoped retrofit
- Slope movement checks were in progress

Zone 3 Slopes

- Additional potential vulnerability not previously identified: Longitudinal slope movement in Zone 3
- High axial strains in previously low-strained tube segments
- Majority of inflow is now in Zone 3
- High uncertainty due to limited critical soil data

- Probabilistic Leakage Hazard Analysis

 Useful to quantify high uncertainties
- Considers *ranges* of key parameters and their probabilities:
 - Earthquake intensities
 - Soil conditions
 - Size and distribution of flawed welds
 - Crack leakage rates
- Informs *risk* of different leakage inflow levels
 - Hazard curves
 - Confidence levels

12

Zone 3 Leakage Hazard Analysis

• Hazard Curves – Zone 3 Inflow

Egress Scenario

. #	DS4	OTS
, ±	DCA	015

Hazard Analysis Observations

Key Findings

- Reduced inflow in Zone 1
- Increased inflow in Zone 3 due to longitudinal slope
- ✓ Current retrofit addresses most vulnerable area (Zone 5/6)
- Wide range of predicted inflows due to high uncertainties
- "Best Estimate" 1000-yr inflow:
 - $\checkmark\,$ gives more than twice the time needed for egress
 - ✓ consistent with original ESP retrofit performance goals for egress
- Higher fractiles (> 84%) or longer return periods:
 - Egress goals will not be met without additional retrofit

Control and mitigate the risk by:

- Alternative or supplemental lighting
- Advance planning, drills, signage for egress
 - Estimated egress times already assume efficient egress
- Continued maintenance and testing of emergency systems
 - Pumping, lighting, communications

Benefits of obtaining additional data:

- ✓ Improve confidence in Zone 3 soils data
- ✓ Improve confidence in condition of panel welds
- ✓ Reduce uncertainty, provide more robust information
- ✓ Possibly reduce best estimate inflows